Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately
نویسندگان
چکیده
Förster resonance energy transfer (FRET) measurements from a donor, D, to an acceptor, A, fluorophore are frequently used in vitro and in live cells to reveal information on the structure and dynamics of DA labeled macromolecules. Accurate descriptions of FRET measurements by molecular models are complicated because the fluorophores are usually coupled to the macromolecule via flexible long linkers allowing for diffusional exchange between multiple states with different fluorescence properties caused by distinct environmental quenching, dye mobilities, and variable DA distances. It is often assumed for the analysis of fluorescence intensity decays that DA distances and D quenching are uncorrelated (homogeneous quenching by FRET) and that the exchange between distinct fluorophore states is slow (quasistatic). This allows us to introduce the FRET-induced donor decay, εD(t), a function solely depending on the species fraction distribution of the rate constants of energy transfer by FRET, for a convenient joint analysis of fluorescence decays of FRET and reference samples by integrated graphical and analytical procedures. Additionally, we developed a simulation toolkit to model dye diffusion, fluorescence quenching by the protein surface, and FRET. A benchmark study with simulated fluorescence decays of 500 protein structures demonstrates that the quasistatic homogeneous model works very well and recovers for single conformations the average DA distances with an accuracy of < 2%. For more complex cases, where proteins adopt multiple conformations with significantly different dye environments (heterogeneous case), we introduce a general analysis framework and evaluate its power in resolving heterogeneities in DA distances. The developed fast simulation methods, relying on Brownian dynamics of a coarse-grained dye in its sterically accessible volume, allow us to incorporate structural information in the decay analysis for heterogeneous cases by relating dye states with protein conformations to pave the way for fluorescence and FRET-based dynamic structural biology. Finally, we present theories and simulations to assess the accuracy and precision of steady-state and time-resolved FRET measurements in resolving DA distances on the single-molecule and ensemble level and provide a rigorous framework for estimating approximation, systematic, and statistical errors.
منابع مشابه
A flexible approach to assess fluorescence decay functions in complex energy transfer systems
BACKGROUND Time-correlated Förster resonance energy transfer (FRET) probes molecular distances with greater accuracy than intensity-based calculation of FRET efficiency and provides a powerful tool to study biomolecular structure and dynamics. Moreover, time-correlated photon count measurements bear additional information on the variety of donor surroundings allowing more detailed differentiati...
متن کاملResolution of Two Sub-Populations of Conformers and Their Individual Dynamics by Time Resolved Ensemble Level FRET Measurements.
Most active biopolymers are dynamic structures; thus, ensembles of such molecules should be characterized by distributions of intra- or intermolecular distances and their fast fluctuations. A method of choice to determine intramolecular distances is based on Förster resonance energy transfer (FRET) measurements. Major advances in such measurements were achieved by single molecule FRET measureme...
متن کاملConformations and interactions of star-branched polyelectrolytes.
Combining monomer-resolved molecular dynamics simulations with a theory based on a variational free energy, we calculate the conformational properties and the effective interactions of star-branched polyelectrolytes for a large variety of arm numbers, degrees of polymerization, and charge fractions, with and without added salt. We find quantitative agreement between theory and simulation and pu...
متن کاملKinetics of fast changing intramolecular distance distributions obtained by combined analysis of FRET efficiency kinetics and time-resolved FRET equilibrium measurements.
Detailed studies of the mechanisms of macromolecular conformational transitions such as protein folding are enhanced by analysis of changes of distributions for intramolecular distances during the transitions. Time-resolved Förster resonance energy transfer (FRET) measurements yield such data, but the more readily available kinetics of mean FRET efficiency changes cannot be analyzed in terms of...
متن کاملCell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology.
Direct or indirect interactions between membrane proteins at the cell surface play a central role in numerous cell processes, including possible synergistic effects between different types of receptors. Here we describe a method and tools to analyze membrane protein-protein interaction at the surface of living cells. This technology is based on the use of specific antibodies directed against ea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 121 شماره
صفحات -
تاریخ انتشار 2017